Westbury Maths Curriculum

At Westbury, we teach maths using a Mastery Approachour planning is informed by the 5 Big Ideas outlined in the diagram. We teach both knowledge and skills through the use of small, manageable steps which allows for strong progression throughout the year and across the age ranges. Although we have mixed aged classes, our Maths curriculum is taught to each year group individually. We take our small steps from the Can Do scheme but adapt and use our own resources alongside, where needed. Our Maths is taught to every year group on a daily basis, with job shares and PPA cover teaching separate topics to allow for continuity within progression and to allow for teachers to pick up on misconceptions taught in previous lessons. Our lesson design follows the same format for Years 1-6 with each lesson having a Do It, Explain It and Deepen It section. This allows for the children to practise the skills taught in the lesson as well as having an opportunity to reason and problem solve.

Teaching for Mastery 5 big ideas

We teach KIRFS (Key Instant Recall Facts) at the start of every lesson to practise quick recall of number facts for each year group. This is planned based on the KIRF timetable (see below). In 2022 we begun the programme called Mastering Number which is taught to Reception, Year 1 and Year 2. We follow this programme which has a lesson 4 days a week to develop the children's basic number skills such as subitising. For assessment we use the Remember It tests from the Can Do programme. These are termly tests which assess the children on what they have been taught and include arithmetic questions as well as reasoning and problem solving. We use these assessments to inform our planning of interventions and to plan for misconceptions in the future as well as to keep a record of progress throughout the year.

CE Primary Scheot

Westbury Lesson Design

Each part of the lesson design is taught first with the pupils working with the teacher as a year group. The pupils then complete their independent learning, working through the Do It, Explain It and Deepen It.

KIRF
5-10 minutes spent practising quick recall of key facts.
Do It
What it is, what it is also
a new skill as a manageable step
Explain It
What it is not
Explaining a misconception, a mistake; orally with the teacher and in writing independently.
Deepen It
Apply their learning, problem solving
Word problem or challenge to apply what they have learnt in a deeper, way

	Preschool	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\stackrel{r}{3}$	Recognise and recite the number names to 5. Touch count to 3.	Name numbers in order to 10 and compare 2 numbers by saying which is more or less.	Recite the number names in order to 50 and beyond.	Recite the number names in order to 100. I know number bonds to 10 . I know number bonds to 20.	I know number bonds for all numbers up to 20. Count in 50s and 100s.	I know number bonds to 100. Count in 25 s and 1000s.	I know the multiplication and division facts for all times tables up to 12×12.	I know the multiplication and division facts for all times tables up to 12×12.
\xrightarrow{N}	Recite the number names in order to 5. Touch count to 5 .	Recognise quantities, without counting, up to 5. (Subitise)	I can add 0 or 1 to a number. I can add 2 to a number.	I know doubles and halves of numbers to 20. I know near doubles to 10. I can use bridging and compensation for addition to 10+10.	Count in 3s. I know the multiplication and division facts for the 3 times table. (up to 12×3)	Count in 6s. I know the multiplication and division facts for the 6 times table. (up to 12×6)	I can find factor pairs of a number.	I can identify common factors of a pair of numbers.
$\begin{aligned} & \text { İ } \\ & \text { in } \end{aligned}$	Use the language: before, after, next.	I can say 1 more than a given number up to 10 .	I know number bonds to 10 . I know odd and even numbers to 20.	Count in 2 s . I know the multiplication and division facts for the 2 times table. (up to 12×2)	Count in 4s. I know the multiplication and division facts for the 4 times table. (up to 12×4)	Count in 9s and 11s. I know the multiplication and division facts for the 9 and 11 times tables. (up to 12×9 and 12×11)	I can identify prime numbers up to 20. I can recall square numbers up to 144 and their square roots.	I can identify prime numbers up to 50 . Know the square roots of square numbers to 15×15
$\begin{aligned} & N \\ & \text { N } \end{aligned}$	Sort objects and say which group is more/less. Name simple shapes.	Partition numbers to 5 into 2 groups.	Count in 2 s to 20. Count in 10s to 100. Count in 5 s to 50.	Count in 5 s and 10s. I know the multiplication and division facts for the 10 and 5 times table. (up to 12×10 and 12x5)	Count in 8s. I know the multiplication and division facts for the 8 times table. (up to 12×8)	Count in 7 s and 12s. I know the multiplication and division facts for the 7 and 12 times table. (up to 12×7 and 12×12)	Know the decimal and percentage equivalents of the fractions $1 / 2,1 / 4,3 / 4,1 / 3$, $2 / 3$, tenths and fifths	Know the decimal and percentage equivalents of the fractions $1 / 2,1 / 4,3 / 4,1 / 3$, $2 / 3$, tenths and fifths
$\begin{aligned} & \stackrel{-}{\varepsilon} \\ & \stackrel{n}{n} \end{aligned}$	Recite number names to 10 .	Recall number bonds of numbers $0-10$, including partitioning facts. Know some odd and even numbers to 10.	I can add 10 to a number.	Count in 3s to 36.	Count up and down in tenths. I can recognise decimal equivalents of tenths.	I can recognise decimal equivalents of the fractions $1 / 2,1 / 4,3 / 4$, tenths and hundredths.	I know decimal number bonds to 1 and 10.	Revisit previous KIRFS
$\begin{aligned} & N \\ & \Sigma \\ & \vdots \\ & \end{aligned}$	Recite number names in order to 10.	Recite number names in order to 20. Automatically recall doubles facts up to $5+5$.	I know doubles and halves of numbers to 10. I know near doubles to 5 .	To begin to know the 3 times tables. (up to 10×3)	I can multiply and divide 1 digit numbers by 10 .	I can multiply and divide 1 and 2-digit numbers by 10 and 100.	Revisit previous KIRFS	Revisit previous KIRFS

Key Instant Recall Facts (KIRFs)

Willow Class Maths (Reception and Year 1)

In Willow Class Maths, the Reception children are taught Mastering Number 4 days a week and join the Year 1 children for some of the Thursday and Friday lessons which cover Geometry and Measurement. The Year 1s also have 4 sessions of Mastering Number as well as their daily maths lesson outlined below.

Autumn Term

Mondays, Tuesdays and Wednesdays			Thursdays and Fridays		Mastering Number	Mastering Number
Topic	Week	Objective	Topic	Objective	Taught 4 days a week Pupils will have an opportunity to consolidate the Early Learning Goals and continue to explore the composition of numbers within 10 , and the position of these numbers in the linear number system. Pupils will: - subitise within 5 , including when using a rekenrek, and re-cap the composition of 5 - develop their understanding of the numbers 6 to 9 using the ' 5 and a bit' structure - compare numbers within 10 and use precise mathematical language when doing so - re-cap the order of numbers within 10 and connect this to ' 1 more' and ' 1 less' than a given number - explore the structure of even numbers (including that even numbers can be composed by doubling any number, and can be composed of 2 s)	Taught 4 days a week
Number and Place Value: Up to 20	1	Count at least 20 objects	Geometry: Properties of Shapes (2D) Whole Class			Pupils will build on previous experiences of number from their home and nursery environments, and further develop their subitising and counting skills. They will explore the composition of numbers within 5 . They will begin to compare sets of objects and use the language of comparison. Pupils will: - identify when a set can be subitised and when counting is needed - subitise different arrangements, both unstructured and structured, including using the Hungarian number frame - make different arrangements of numbers within 5 and talk about what they can see, to develop their conceptual subitising skills
		Represent numbers from 10 to at least 20				
				Recognise and name rectangles		
				Recognise and name squares		
	2	Explore the structure of numbers up to at least 20				
		Within the range 0-20 count forwards from a given number to another given number				
		Within the range 20-0 count backwards from a given number to another given number				
				Recognise and name circles		
				Recognise and name triangles		
	3	Compare numbers identifying which one is more	Geometry: Properties of Shapes (3D) Whole Class			
		Compare number identifying which one is less Order numbers				
		Order numbers		Recognise and name cuboids		
				Recognise and name cubes		
	4	Find one more and one less than a number up to at least 20				
Addition and Subtraction		Add 1 to numbers up to 20				
		Subtract 1 from numbers up to 20				
				Recognise and name pyramids		
	5	Write addition problems by combining two sets using + and $=$		Recognise and name spheres		

- explore the structure of
the odd numbers as being composed of $2 s$ and 1 more - explore the composition of each of the numbers 6, 8, and 10
- explore number tracks and number lines and identify the differences between them
- spot smaller numbers
'hiding' inside
larger numbers
connect quantities and
numbers to finger
patterns and explore
different ways of
representing numbers on
their fingers
- hear and join in with the counting
sequence, and connect this to the
'staircase' pattern of the counting
numbers, seeing that each number is
made of one more than the previous number
- develop counting skill and knowledge
including: that the last number in the
count tells us 'how many' (cardinality); to
be accurate in counting, each thing must
be counted once and once only and in
any order; the need for 1:1 correspondence; understanding that
anything can be counted, including
actions and sounds
- compare sets of objects by matching
- begin to develop the language of 'whole'
when talking about objects
which have parts

A small school, dreaming big

Spring Term

Addition and Subtraction: Facts of 7-10	1	Partition 10			Pupils will continue to explore the composition of numbers within 10 and explore addition and subtraction structures and the related language (without the use of symbols).	Pupils will continue to develop their subitising and counting skills and explore the composition of numbers within and beyond 5. They will begin to identify when two sets are equal or unequal and connect two equal groups to
		Find and represent all addition number facts of 10				
		Find and represent all subtraction number facts of 10				
				Measure lengths and heights using common standard units		
				Extra problem solving		
	2	Remember It 2 and Problem Solving	Measurement: Time			
		Remember It 2 and Problem Solving				

		Remember It 2 and Problem Solving
Addition and	3	Partition 11
Subtraction: Facts of 11-16		Find and represent all addition number facts of 11
		Find and represent all subtraction number facts of 11
	4	Partition 12
		Find and represent all addition number facts of 12
		Find and represent all subtraction number facts of 12
	5	Partition 13
		Find and represent all addition number facts of 13
		Find and represent all subtraction number facts of 13
	6	Partition 14
		Find and represent all addition number facts of 14
		Find and represent all subtraction number facts of 14
	7	Partition 15
		Find and represent all addition number facts of 15
		Find and represent all subtraction number facts of 15

Know and use the days of the week
Knear yene months of the
Recognise and use the language
related to dates
Tell the time to the hour

- explore the composition of each of the numbers 7 and 9
- explore the composition of odd and even numbers, seeing that even numbers can be made of two odd or two even parts, and that odd numbers can be composed of one odd part and one even part
- identify the number that is two more or two less than a given odd or even number, identifying that two more/ less than an odd number is the next/ previous odd number, and two more/ less than an even number is the next/ previous even number - explore the aggregation and partitioning structures of addition and subtraction
through systematically partitioning and recombining numbers within 10 and connecting this to
the part-part-whole diagram, including using the language of parts and wholes
- explore the augmentation and reduction structures of addition and reduction
using number stories,
including introducing the 'first, then, now' language structure
doubles. They will begin to connect quantities to numerals.

Pupils will:

- continue to develop their subitising
skills for numbers within and beyond 5,
and increasingly connect quantities to numerals
- begin to identify missing parts for
numbers within 5
- explore the structure of the numbers 6
and 7 as ' 5 and a bit' and connect this
to finger patterns and the Hungarian number frame
- focus on equal and unequal groups
when comparing numbers
- understand that two equal groups can
be called a 'double' and connect this to finger patterns
- sort odd and even
numbers according to their 'shape'
- continue to develop their understanding
of the counting sequence and link
cardinality and ordinality through the
'staircase' pattern
- order numbers and play track games
- join in with verbal counts beyond 20,

Summer Term

Addition and Subtraction: Facts of 17-20	1	
		Find and represent all addition number facts of 19
		Find and represent all subtraction number facts of 19
	2	Partition 20
		Extra Problem Solving
		Extra Problem Solving

Recognise and know the value of the 20p coin
Recognise and know the value of the 50p coin
Recognise and know the value of
the £l coin

Pupils will explore the composition of numbers within 20 and their position
in the linear number system. They will connect addition and subtraction expressions and equations to 'number stories').

Pupils will:

- explore the composition of the numbers 11 to 19 as ' 10 and a bit' and

Pupils will consolidate their counting skills, counting to larger numbers and developing
wider range of counting strategies. They will secure knowledge of number facts through varied practice Pupils will:

- continue to develop their counting skills,

				Recognise and know the value of the $£ 2$ coin	compare numbers within 20 - connect the composition of the numbers 11 to 19 to their position in the linear number system, including identifying the midpoints of 5,10 and 15 - compare numbers within 20 - understand how addition and subtraction equations can represent previously explored structures of addition and subtraction (aggregation/ partitioning/ augmentation/ reduction) - practise retrieving previously taught facts and reason about these	counting larger sets as well as counting actions and sounds - explore a range of representations of numbers, including the $10-$ frame, and see how doubles can be arranged in a 10-frame - compare quantities and numbers, including sets of objects which have different attributes - continue to develop a sense of magnitude, e.g. knowing that 8 is quite a lot more than 2, but 4 is only a little bit more than 2 begin to generalise about 'one more than' and 'one less than' numbers within 10 - continue to identify when sets can be subitised and when counting is necessary - develop conceptual subitising skills including when using a rekenrek
Fractions	3	Recognise a half of one of two equal parts of an object or shape				
		Find half of objects Find half of an amount				
				Recognise and know the value of the 55 note		
				Recognise and know the value of the $£ 10$ note		
	4	Recognise a quarter as one of four equal parts of an object or shape				
		Find one quarter of objects				
		Find one quarter of an amount				
				Recognise and know the value of the $£ 20$ note		
				Extra problem solving		
	5	Remember It 4 and Problem Solving	Measurement: Mass and Capacity Whole Class			
		Remember It 4 and Problem Solving				
		Remember It 4 and Problem Solving				
				Compare mass of objects, heavier. lighter than		
				Order objects by mass		
Addition and Subtraction	6	Add two single digit numbers within 10				
		Add two single digit numbers bridging 10				
		Add ten and a single digit number				
				Measure the mass of objects using non-standard units		
				Measure the mass of objects using standard units		
	7	Add 9 and a single digit number				
		Subtract a single digit number from a single digit number				
		Subtract a single digit number from a 2 single digit number less than 20 without bridging 10				
				Compare capacity of containers Order containers		

[^0]

[^0]: A small school, dreaming big

